

Pathological response as prognostic indicator for recurrence and survival in early triple negative breast cancer (eTNBC) - use case for multi-centre RWD to support patient access

Giovanni Tramonti¹, Sue Cheeseman², Natalie Wilson¹, Caroline Michie¹, Edward Bolton², Philip Waywell³, James Peach³, Mahéva Vallet¹, Davneet Judge⁴, Arman Papadakis-Sali⁴, Geoff Hall², Peter Hall¹ 1 Edinburgh Cancer Centre, The University of Edinburgh; 2 Leeds Teaching Hospitals NHS Trust, 3 DATA-CAN, HDR-UK; 4 Roche products Ltd, Welwyn garden city

Objective

Describe the survival outcomes for patients who achieved and did not achieve pCR, as well as the clinical characteristics and treatments received.

Background

Table 5:

All eTNBC

0 non-pC

pCR

10

New medicines added to neoadjuvant chemotherapy (NACT) may lead to higher pathological complete response (pCR) rates and improved survival in eTNBC. This study comes from 2 UK Cancer Centres, Leeds Teaching Hospitals NHS Trust (DATA-CAN) and the Edinburgh Cancer Centre (NHS Lothian). DATA-CAN is the UK's Health Data Research Hub for Cancer, a UK wide partnership of six founding organisations including hospitals, and universities. The Cancer Research UK Edinburgh Centre is a partnership between Cancer Research UK (CRUK), NHS Lothian and the University of Edinburgh.

Table 2:		Tumour Characteristics n = 228				
Cohort descriptio	n	Tumour size	No.	%		
The median follow up	was of four	< 2cm	22	9.7		
The median follow-up	was of four	≥ 2cm	198	86.8		
and half years. 50%	of patients	missing	8	3.5		
, , , , , , , , , , , , , , , , , , , ,		Stage (AJCC)	No.	%		
were less than 50 yea	rs old at the	1	13	5.7		
time of diagnosis (Clinical trial	11	147	64.5		
and of alagreeter.	onnoar thai		59	25.9		
involvement was lir	nited to 8	missing	9	3.9		
nationte in the r	noo adiuwant	Clinical Stage T	No.	%		
patients in the i	ieo-aujuvani	71	22	9.6		
setting and was ab	sent in the	12	132	57.9		
		73	29	12.7		
adjuvant setting		14	3/	16.2		
Table 1: Patient characteri	stics n = 228	missing	8	3.5		
Age Group	lo %	Clinical Stage N	NO.	% 41.2		
	<i>i</i> 0. <i>i</i> 0	NU1+	117	41.2		
(years)	1 18	missing	17	7.5		
40-44 3	37 16.2	Grade	No.	%		
45-49 3	36 15.8	1	≤ 5	≤ 2.2		
50-54	13.6	2	34	15.7		
55-59	12.7	3	190	83.3		
60-64	10.1	missing	≤ 5	≤ 2.2		
65 60 10 5 0 -		Other primary, No. , %	13	6		
70.74	.2 5.5	pCR	No.	%		
70-74	12 5.3	1 (Yes)	74	32.5		
>75	7 3.1	0 (No)	154	67.5		

Methods

A retrospective, longitudinal cohort study was conducted using data from routine care records of patients with eTNBC from the two UK Cancer Centres. The final Leeds-Edinburgh pooled cohort comprised 228 women. After data extraction and linkage, manual curation and quality control were undertaken. Descriptive statistics on demographics, clinical characteristics, and treatment patterns were drawn; survival outcomes were obtained through Kaplan-Meier analysis of overall survival (OS) and event-free survival (EFS) data. The limitation of missing data was mitigated by manual curation by trained clinical staff.

Chemotherapy regimens

The proportion of different chemotherapy regimens changed over time (Table 3) and key pathway metrics are presented with regards to timing of diagnosis, diagnosis and chemotherapy.

Table 3: absolute numbers and percentages of the SACT class use by year of diagnosis.

Chemotherapy, count (%)	2010	2011	2012	2013	2014	2015	2016
Platinum	0 (0)	≤ 5 (22)	0 (0)	≤ 5 (19)	≤ 5 (13)	0 (0)	≤ 5 (14)
Anthracycline and Taxane	14 (58)	18 (78)	20 (80)	21 (72)	26 (63)	41 (85)	34 (89)
Anthracycline, no Taxane	9 (38)	≤ 5 (22)	≤ 5 (25)	7 (24)	11 (27)	≤ 5 (10)	≤ 5 (14)
Taxane, no Anthracycline	≤ 5 (22)	0 (0)	≤ 5 (25)	0 (0)	≤ 5 (13)	≤ 5 (10)	≤ 5 (14)
Other	11 (46)	12 (52)	9 (36)	8 (28)	11 (27)	22 (46)	13 (34)
Number of Diagnoses, count	24	23	25	29	41	48	38

Table 4:Key pathway metrics.

Strata pCR=0 pCR=1

All Patients	Median	Mean (SD)	Range
Time from diagnosis to surgery (days)	174	180 (30.3)	91 - 291
Time from diagnosis to first chemo (days)	30	33 (13.7)	0 - 139
Time from first chemo to surgery (days)	142	147 (29.9)	42 - 270

All eTNBC patients

Strata pCR=0 pCR=1

OS/IDFS and pCR status outcomes

0.96

0.93

P	atients							ival
	Year	Survival	95% CI	EFS	Year	Survival	95% CI	Ξ
2	5	0.61	0.53-0.69	non-pCR	5	0.56	0.48-0.65	Su
	10	0.52	0.43 - 0.63		10	0.51	0.43 - 0.61	alla

pCR

10

0.85

0.82

The analysis performed on the full cohort suggests that pCR is a strong predictor of overall and event-free survivals with approximately 30% more patients alive at 5 years if they had achieved pCR following NACT, compared to patients who did not achieve pCR.

0.91 - 1

0.86 - 1

Conclusion

The findings from this real-world retrospective study demonstrate the differences in survival outcomes between patients achieving pCR and those who do not. Patients who received NACT and had a documented pCR status had improved survival outcomes compared to non-pCR patients. The poor survival outcomes in patients not achieving pCR after NACT demonstrates a significant unmet need in this population. The findings of this study show the differences in survival outcomes between patients achieving pCR and non-pCR patients.

All eTNBC patients

This project was sponsored by Roche Products Ltd. DATACAN provided support with data curation, anonymisation and analysis, which was funded by Roche Products Ltd.

Figure 1:

0.86 - 0.99

0.81 - 0.98